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ABSTRACT
Collaborative Filtering (CF) has been widely applied for personal-
ized recommendations in various industrial applications. However,
due to the training strategy of Empirical Risk Minimization, CF
models tend to favor popular items, resulting in inferior perfor-
mance on sparse users and items. To enhance the CF representa-
tion learning of sparse users and items without sacrificing the
performance of popular items, we propose a novel Popularity-
aware Distributionally Robust Optimization (PDRO) framework. In
particular, PDRO emphasizes the optimization of sparse users/items,
while incorporating item popularity to preserve the performance
of popular items through two modules. First, an implicit module
develops a new popularity-aware DRO objective, paying more
attention to items that will potentially become popular over time.
Second, an explicit module that directly predicts the popularity of
items to help the estimation of user-item matching scores. We apply
PDRO to a micro-video recommendation scenario and implement
it on two representative backend models. Extensive experiments
on a real-world industrial dataset, as well as two public benchmark
datasets, validate the efficacy of our proposed PDRO. Additionally,
we perform an offline A/B test on the industrial dataset, further
demonstrating the superiority of PDRO in real-world application
scenarios.
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1 INTRODUCTION
In the era of information explosion, extensive industrial applications
employ recommendation systems to sift through vast amounts of
items for personalized recommendations. Collaborative Filtering
(CF) stands as the foremost method in the realm of recommendation.
Typical, CF models learn the representations of users and items
through historical user-item interactions and then rank item
candidates for each user by the matching scores between the user
and item representations [16]. However, due to the optimization
by Empirical Risk Minimization (ERM), these CF models are more
inclined to learn the representations of dense users and popular
items with a larger number of interactions [41]. As such, they
typically suffer from suboptimal performance when dealing with
sparse users and items [4].

To tackle this issue, previous studies primarily fall into two
categories: 1) Debiasing recommendation reduces the effects of
popular items on model training by causal methods or intuitive
strategies [5, 9, 14, 15, 35], balancing the representation learning
between popular and sparse items. And 2) disentanglement learning
endeavors to disentangle user preferences from item popularity, and
then leverage the actual user preferences for recommendations [27,
51]. Despite their success, these works mainly regulate the effects
of popular items while overlooking the effective representation
learning of sparse users and items explicitly.

To improve the representation of sparse users and items, a
recent work [41] applies Distributionally Robust Optimization
(DRO) to the recommender learning process, aiming to emphasize
the optimization of the worst group in the uncertainty set of the
training data1 [25, 34]. However, this work reveals two critical
weaknesses by directly employing DRO for recommendation.
First, it only considers the worse user groups and thus fails to
simultaneously emphasize the representation learning on sparse
items. Second, directly applying DROmight enhance the worst-case
performance at the expense of popular items [31], degrading the
overall recommendation accuracy. In light of these, our objective is
to boost the representation learning of both the sparse users and
items without sacrificing the popular ones.

1The uncertainty set denotes a family of pre-determined distributions encompassing
both the empirical distributions and the potentially shifted distributions.

https://doi.org/10.1145/3583780.3615492
https://doi.org/10.1145/3583780.3615492


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Jujia Zhao et al.

To this end, we introduce a Popularity-aware DRO (PDRO)
framework, which additionally considers popularity in the DRO.
Initially, we partition the user-item interaction pairs into groups
by their loss values, where the loss values reflect the quality
of the representations of users and items [3]. Subsequently, to
improve the representation learning on sparse users and itemswhile
maintaining the performance of popular items, we incorporate item
popularity into DRO via two modules: implicit module devises a
new popularity-aware DRO objective, which pays more attention
to the items that will potentially become popular over time. After
the training with the popularity-aware DRO, an explicit module
is designed to directly predict the temporal item popularity for
estimating the user-item matching scores.

We implement PDRO on two competitive backend models,
LightGCN [11] and ACVAE [42], covering the traditional CF
model and sequential model. Besides, we collect a real-world
recommendation dataset from the Huawei micro-video APP that
covers rich user and item features. Rigorous experiments on this
industrial dataset, along with two public datasets, validate the
effectiveness of our proposed PDRO framework. Additionally, we
conduct an offline A/B test in this micro-video recommendation
scenario, revealing the superiority of PDRO over the previous
recommender model. This new industrial Micro-video dataset is
released along with our codes to facilitate recommendation session
at https://github.com/Polaris-JZ/PDRO.

2 PRELIMINARY
•DistributionallyRobustOptimization (DRO) aims tominimize
the loss of the worst case in the uncertainty setU defined by the
training data [21]. The objective of DRO can be defined as:

𝜃∗DRO := argmin
𝜃 ∈Θ

{
max
U∈U
E(𝑥,𝑦) ∈U [L (𝜃 ; (𝑥, 𝑦) ) ]

}
, (1)

where U represents a pre-determined family of training data
distribution, and U denotes one possible distribution in U. This
objective function aims to pay more attention to optimizing U
with the large loss, enhancing the generalization ability to possible
testing data with distribution shifts.

Afterward, to avoid over-fitting some outliers with noisy labels,
[34] proposes a novel approach called Group-DRO, which defines
uncertainty set by dividing the distribution of training data into 𝑁
subgroups. The objective function of Group-DRO is formulated as:

𝜃∗Group-DRO := argmin
𝜃 ∈Θ

{
max
𝒘∈Δ𝑁

𝑁∑︁
𝑖=1

𝑤𝑖E(𝑥,𝑦)∼𝑃𝑖 [L (𝜃 ; (𝑥, 𝑦) ) ]
}
, (2)

where 𝑤𝑖 is the weight of group distribution 𝑃𝑖 , 𝒘 is a weight
vector denoted as [𝑤1,𝑤2, ...,𝑤𝑁 ], and Δ𝑁 is a (𝑁 −1)-dimensional
probability simplex, satisfying that 𝑤𝑖 ≥ 0 and

∑𝑁
𝑖=1𝑤𝑖=1 [34].

The primary goal of Group-DRO is to enhance the worst-group
performance by emphasizing the optimization of the groups with
the large loss.

Although Group-DRO has the potential ability to learn better
representations for sparse users and items, it may inadvertently
compromise the performance of popular items [31]. Additionally,
the performance of Group-DRO heavily relies on the grouping
strategy since the optimization is performed at the group level.

3 METHOD
In order to enhance the representation learning of sparse users/items
while maintaining the performance of popular items, we group
user-item interactions by their loss values, and then integrate
item popularity into the DRO framework via implicit and explicit
modules. Next, we will detail the proposed PDRO framework.

3.1 Popularity-aware DRO
The implicit module enhances the DRO objective function via
two key components: 1) a worst-group component that aims at
emphasizing the optimization of the groups with the large loss,
and 2) a popularity component that considers the items’ popularity
shifts over time, and pays more attention to the items that are likely
to become popular in the future.
• Group partition. We employ the Group-DRO setting, which
has demonstrated effectiveness in recommendation scenarios [41].
Due to the infrequent occurrence of sparse users and items in
the training interactions, CF models fail to effectively learn their
representations, resulting in elevated losses [41]. We justify this
phenomenon via the empirical evidence in Figure 1, showing an
inverse relationship between popularity and loss. Motivated by this
observation, we perform group partition based on the losses of user-
item interaction pairs in each training epoch, thereby ensuring that
the group partition can be dynamically adjusted, enabling the model
to focus on the sparse user-item groups that have inadequately
learned representations with a large loss in each epoch.

We divide the user-item interactions into 𝑁 groups, and further
categorize them into𝑇 stages chronologically using the timestamps
of user-item interactions. Consequently, each user-item pair is
assigned a unique group and stage number. The new popularity-
aware DRO objective is formulated as:

𝜃∗PDRO := argmin
𝜃 ∈Θ

𝑁∑︁
𝑛=1

𝑤𝑛L𝑛 (𝜃 ) . (3)

Here, L𝑛 (·) is the loss of group 𝑛, and 𝑤𝑛 is the weight of
group 𝑛 calculated by the worst-group component and popularity
component2, that satisfies 𝑤𝑛 ≥ 0 and

∑𝑁
𝑛=1𝑤𝑛 = 1. Let 𝒘 be the

weight vector denoted as [𝑤1,𝑤2, ...,𝑤𝑁 ], which is optimized by:

𝒘 := argmax
𝒘∈Δ𝑁

𝑁∑︁
𝑛=1

𝑤𝑛 [ (1 − 𝜆) ·L𝑛 (𝜃 )︸              ︷︷              ︸
(worst-group component)

−𝜆 ·
𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝛽𝑡L𝑡
𝑗 (𝜃 − 𝜂∇𝜃L𝑛 (𝜃 ))︸                                       ︷︷                                       ︸

(popularity component)

], (4)

where 𝒘 is adjusted to maximize the summed loss, and assigned
larger weights to the groups with larger loss due to

∑𝑁
𝑛=1𝑤𝑛 = 1.

Besides, the hyper-parameter 𝜆 is employed to balance the strength
between the two components. Specifically,
• The worst-group component focuses more on the groups with
the large loss, helping to improve the performance of sparse users
and items.

2The gradient of 𝑤𝑛 is excluded from participating in the model update process.

https://github.com/Polaris-JZ/PDRO
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Figure 1: Relationship between loss and popularity.We divide
users and items in Micro-video into 5 groups separately, and
the popularity decreases gradually from group 0 to group 4.

• The popularity component pays more attention to the groups
that can reduce the overall loss after one-step of gradient descent.
L𝑡

𝑗
(𝜃 − 𝜂∇𝜃L𝑛 (𝜃 )) signifies the loss of interactions in group

𝑗 and stage 𝑡 after one-step parameter updates by optimizing
on group 𝑛. By considering the one-step parameter updates, we
can discover the group 𝑛 that can better minimize the overall
loss. The negative sign preceding the popularity component
indicates the desire to assign larger weights to the groups that
can minimize the overall loss. Besides, 𝛽𝑡 = exp(𝑝 ·𝑡) controls the
weights of stages, where 𝛽𝑡 enables the model to concentrate on
interactions in the later stages, and 𝑝 is the hyper-parameter to
modulate the magnitude of the weight discrepancy across distinct
stages. Additionally, the summation of the weighted losses in
the popularity component allows the model to implicitly inject
popularity, as interactions involving popular items contribute
to a higher proportion of the overall loss. By combining the
summation process with the stage weight 𝛽𝑡 , the model will
prioritize the items that potentially become popular in the future,
However, directly applying Eq. (4) incurs a significant compu-

tational burden as it requires the system to consider the updated
models under all possible group selection scenarios. To alleviate
this computational complexity, we employ a First-order Taylor
approximation to simplify Eq. (4) into a gradient-based formulation:

𝒘 := arg max
𝒘∈Δ𝑁

𝑁∑︁
𝑛=1

𝑤𝑛 [ (1 − 𝜆) · L𝑛 (𝜃 )︸                 ︷︷                 ︸
(worst-group component)

+ 𝜆 · 𝑔𝑛
𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝛽𝑡𝑔
𝑡
𝑗︸                 ︷︷                 ︸

(popularity component)

],

(5)
where 𝑔𝑛 is the loss gradient of group 𝑛, and 𝑔𝑡

𝑗
is the loss gradient

of the interactions from group 𝑗 and stage 𝑡 . Eq. (5) only needs to
calculate the gradients for different groups, significantly reducing
the computational burden.

The update of𝑤𝑛 depends on the worst-group component and
popularity component. Following [41], we use a step size factor 𝜂
to control the strength of the update:

𝑤𝑒
𝑛 = 𝑤𝑒−1

𝑛 · exp(𝜂 · ( (1 − 𝜆) ·L𝑛 (𝜃 ) + 𝜆 · 𝑔𝑛
𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝛽𝑡𝑔
𝑡
𝑗 ) ) . (6)

where𝑤𝑒
𝑛 represents the weight of group 𝑛 in the current batch 𝑒 ,

and 𝒘0 follows a uniform distribution. Additionally, followed by
[41], a streaming algorithm is employed to smooth the loss update
for specific groups, mitigating the batch-to-batch variances:

L𝑒
𝑛 ← 𝛼 · L𝑒

𝑛 + (1 − 𝛼 ) · L𝑒−1
𝑛 , (7)

Table 1: Statistics of three datasets. #Inter./#user denotes the
average number of interactions per user.

Dataset #User #Item #Interaction #Inter./#user Density

Micro-video 25,871 44,503 210,550 7.40 1.66e-04
KuaiRand 22,128 7,076 621,064 22.42 3.17e-03

Amzon-book 64,907 88,027 1,991,329 25.02 2.84e-04

where 𝛼 serves as the streaming factor controlling the smoothing
degree between the group losses of two consecutive batches, and
L𝑒
𝑛 represents the overall loss of group 𝑛 in the current batch 𝑒 .
To summarize, we implicitly incorporate popularity into Group-

DRO, ensuring that DRO also focuses on the items that will poten-
tially become popular in the future, instead of blindly enhancing
the worst-group performance.

3.2 Explicit Module
In addition to implicitly injecting popularity into DRO, we also
incorporate popularity directly to assist the model in calculating
the user-item matching score. Inspired by [50], we use the stages
divided by Section 3.1 to calculate the popularity of all items in
each stage separately:

𝑝𝑡𝑖 = 𝑀𝑡
𝑖 /

∑︁
𝑘∈K𝑡

𝑀𝑡
𝑘
, (8)

where 𝑝𝑡
𝑖
is the popularity of item 𝑖 in stage 𝑡 , 𝑀𝑡

𝑖
represents the

interaction number of item 𝑖 in stage 𝑡 , andK𝑡 represents all items in
this stage 𝑡 . After we get the item popularity in different stages, we
employ a time-series forecasting method to predict the popularity:

𝑝𝑡𝑖 = 𝑝𝑡−1𝑖 + 𝜎 (𝑝𝑡−1𝑖 − 𝑝𝑡−2𝑖 ), (9)

where 𝜎 is the hyper-parameter that is used to adjust the popularity
trend drift. Note that we only predict the popularity of the items
with stage 𝑡 ≥ 3. For the items in the first and second stages, we
use their own popularity calculated by Eq. (8) for the subsequent
estimation. After getting item popularity, we estimate the user-item
matching score by3:

𝑠 (𝑢, 𝑖 ) = (1 + 𝑝𝑡𝑖 )𝛾 · 𝑠𝑜 (𝑢, 𝑖 ), (10)

where 𝑠𝑜 (𝑢, 𝑖) represents the matching score for user 𝑢 and item
𝑖 from the backend model optimized by PDRO, and 𝛾 is a hyper-
parameter that adjusts the strength of the popularity factor. In
this way, we effectively integrate item popularity into the user-
item matching scores, thereby ensuring the performance of popular
items. To maintain consistency in the training and testing proce-
dures, we employ Eq. (10) for both phases.

4 EXPERIMENTS
In this section, we perform a series of experiments aimed at
addressing the following research questions:
- RQ1: How does the performance of PDRO compare with other
baselines across the datasets?

- RQ2: What is the impact of different components within the
PDRO on overall performance?

- RQ3: How does the performance of PDRO in groups with
different sparsity levels compare with that of backend models?

3To avoid the extremely small popularity of some sparse items significantly affecting
the range of the final matching scores, we add one to the popularity score in Eq. (9) to
regulate the magnitude of popularity.
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Table 2: Overall performance of PDRO and other baselines. Bold signifies the best performance among the backend models,
backend-DRO and backend-PDRO while underline represents the second-best model. The row of percentage improvement (%
Improve.) quantifies the performance gain of PDRO in comparison to the second-best method. * denotes statistically significant
improvements of PDRO over the backend models, according to the t-tests with a significance level of 𝑝 < 0.01.

Micro-video KuaiRand Amazon-bookModels R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

NCF [12] 0.0801 0.1197 0.0584 0.0709 0.0740 0.1259 0.0498 0.0669 0.0233 0.0389 0.0156 0.0205
COR [38] 0.0677 0.1016 0.0473 0.0579 0.0722 0.1207 0.0481 0.0641 0.0268 0.0440 0.0180 0.0234

MultVAE [19] 0.0857 0.1286 0.0595 0.0735 0.0837 0.1385 0.0554 0.0738 0.0319 0.0507 0.0213 0.0272
MacridVAE [23] 0.0845 0.1243 0.0607 0.0737 0.0773 0.1308 0.0510 0.0687 0.0320 0.0509 0.0213 0.0273
BC-Loss [46] 0.0701 0.1162 0.0485 0.0630 0.0708 0.1204 0.0474 0.0636 0.0276 0.0442 0.0185 0.0237
InvCF [47] 0.0850 0.1293 0.0576 0.0722 0.0754 0.1287 0.0505 0.0680 0.0244 0.0399 0.0166 0.0215

LightGCN [11] 0.0888 0.1321 0.0593 0.0733 0.0741 0.1283 0.0496 0.0674 0.0285 0.0465 0.0188 0.0246
LightGCN-DRO [41] 0.0893 0.1300 0.0603 0.0734 0.0748 0.1299 0.0499 0.0679 0.0292 0.0481 0.0193 0.0252
LightGCN-PDRO 0.0901* 0.1356* 0.0636* 0.0780* 0.0908* 0.1494* 0.0605* 0.0798* 0.0355* 0.0539* 0.0240* 0.0299*

% Improve. 0.90% 2.65% 5.47% 6.27% 21.39% 15.01% 21.24% 17.53% 21.58% 12.06% 24.35% 18.65%

DIB [20] 0.0740 0.1106 0.0533 0.0650 0.0712 0.1237 0.0478 0.0650 0.0225 0.0374 0.0148 0.0194
CauseRec [49] 0.0638 0.0982 0.0439 0.0591 0.0534 0.0958 0.0398 0.0540 0.0254 0.0406 0.0171 0.0219
ACVAE [42] 0.0647 0.0910 0.0463 0.0546 0.0818 0.1382 0.0545 0.0730 0.0320 0.0487 0.0234 0.0285

ACVAE-DRO [41] 0.0629 0.0907 0.0474 0.0559 0.0828 0.1380 0.0553 0.0735 0.0320 0.0481 0.0231 0.0281
ACVAE-PDRO 0.0674* 0.0944* 0.0493* 0.0576* 0.0904* 0.1472* 0.0590* 0.0777* 0.0338* 0.0509* 0.0238 0.0292*
% Improve. 4.17% 3.74% 4.01% 3.04% 9.18% 6.51% 6.69% 5.71% 5.62% 4.52% 1.71% 2.46%

• Datasets.We assess the effectiveness of PDRO on a real-world
industrial dataset as well as two popular benchmark datasets.

1) Micro-video is an industrial dataset collected from the
Huawei micro-video APP, which contains user-item interactions on
extensive micro-videos for one month. Notably, this dataset stands
out due to its abundant side information on users/items. In terms
of user features, the dataset includes information on age, gender,
and countries with different customs and religious backgrounds.
As for the items, the dataset comprises diverse attributes, such as
duration spanning from less than 2 minutes to 10 minutes, uploader
details, and other relevant characteristics. Furthermore, there is a
rich array of visual features associated with items, including videos
and thumbnails with different resolutions. Additionally, there are
diverse item textual features, containing titles and descriptions
in multiple languages, are collected. Micro-video also captures
abundant interaction behaviors between users and items, such as
exposure, click, play, and like. In this work, positive samples are
identified as micro-videos played by users for durations exceeding
8 seconds.

2)KuaiRand4 is a popular video recommendation dataset, which
contains diverse user feedback signals [6]. 3) Amazon-book5

covers rich user interactions with books. We consider clicking
behavior as positive samples in KuaiRand, and interactions with
ratings ≥ 4 as positive samples in Amazon-book.

For the three datasets, we first sort the interactions chronologi-
cally according to the timestamps. And then we partition the sorted
samples into training, validation, and testing sets by the ratio of
8:1:1. The statistics of datasets are shown in Table 1.
• Evaluation. We adopt full-ranking protocol [11] to evaluate the
performance of all methods. Specifically, as for evaluation metrics,
we employ Recall@𝐾 and NDCG@𝐾 for performance comparison,
where 𝐾 = 10 or 20 on three datasets.
4https://kuairand.com/.
5https://jmcauley.ucsd.edu/data/amazon/.

• Baselines. We compare our proposed PDRO with several
competitive baselines, including non-sequential (NCF, COR, Mult-
VAE, MacridVAE, BC-Loss, InvCF, and LightGCN) and sequential
methods (DIB, CauseRec, and ACVAE). 1) NCF [12] leverages
neural networks to learn the user-item interaction function. 2)
COR [38] proposes a causal representations learning framework to
enhance robustness under shifts of user features. 3) MultVAE [19]
introduces a Variational Auto-Encoder (VAE) framework with
multinomial likelihood. 4) MacridVAE [23] learns disentangled
user representation learning at both intention- and preference-level.
5) BC-Loss [46] introduces a bias-aware margin into contrastive
loss to alleviate the popularity bias. 6) InvCF [47] disentangles the
popularity semantics and invariant user representations for robust
prediction. 7) LightGCN [11] leverages high-order neighbors infor-
mation to enhance the user and item representations. 8) DIB [20]
employs information theory to disentangle representations into
biased and unbiased parts. 9) CauseRec [49] integrates counter-
factual thinking to synthesize user sequences. 10) ACVAE [42]
proposes a VAE-based learning framework injected with contrastive
learning and adversarial training. 11) Group-DRO [41] utilizes
DRO to optimize the worst-group performance. We implement
Group-DRO on both LightGCN and ACVAE.
• Hyper-parameter Settings. We instantiate PDRO on two
competitive baselines of non-sequential and sequential methods (i.e.,
LightGCN and ACVAE). The best hyper-parameters are selected
based on the Recall of the validation set, with the searching scopes
as follows: Group number 𝑁 and streaming step size 𝛼 are tuned in
{2, 3, 5, 7} and {0.1, 0.3, 0.5, 0.7}, respectively. We search the stage
number 𝑇 , strength factor 𝜆, and stage importance factor 𝑝 in
the range of {2, 4, 6, 8, 10}, {0.1, 0.3, 0.5, 0.7}, and {0.2, 0.5, 1, 1.5},
respectively. The strength of popularity trend 𝜎 is selected in
{0.1, 0.2, 0.4, 0.6, 0.8}, and the strength of popularity factor 𝛾 is
searched in {1, 2, 3, 4, 5, 6}.

https://kuairand.com/.
https://jmcauley.ucsd.edu/data/amazon/.
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4.1 Overall Performance (RQ1)
The overall performance of PDRO and other baselines are shown
in Table 2, from which we can observe that:
• The VAE-based methods (MultVAE, MacridVAE, and ACVAE)
consistently yield competitive results on three datasets. It may
be attributed to 1) the modeling of user preference over all items
in the latent space, and 2) the consideration of random noises in
the interaction generation process during training [32].
• LightGCN usually outperforms other baselines among non-
sequential methods, which is attributed to the incorporation
of high-order neighbors’ information by graph propagation. As
for sequential methods, ACVAE exceeds DIB and CauseRec in
most cases. The reason may be that ACVAE employs contrastive
learning and adversarial training, pushing the model to learn
robust representations learning for sparse items.
• In most cases, the Group-DRO improves the performance of the
backend model, which is ascribed to the optimization over the
worst group. Nevertheless, the relatively minor improvements
compared to the backend model are due to the sacrifice on the
popular items (cf. Section 4.2.2). In contrast, PDRO significantly
outperforms the backend model, validating the effectiveness of
simultaneously considering sparse and popular items.
• Offline A/B Test. We also conduct an offline A/B test on Micro-
video to assess the efficacy of PDRO within realistic industry sce-
narios [8]. The utilization of offline A/B test enables a comparative
evaluation of the new system’s performance against the current
system in an industrial setting [8]. Furthermore, this approach offers
notable advantages in terms of efficiency and cost-effectiveness. The
objective of the A/B test is to estimate the potential uplift generated
by our new system, denoted as 𝜋𝑡 , compared to the current system,
denoted as 𝜋𝑝 . The current system 𝜋𝑝 is trained on exposed data 6,
while the new system 𝜋𝑡 is trained on played data (cf. Section 4).

To prevent high variance and bias in the recommendation setting,
we employ the capped importance sampling [8]. Specifically, we
estimate the expected rewards 𝑅𝐼𝑆 using the following formula:

𝑅𝐼𝑆 =
1
𝑛

∑︁
(𝑢,𝑖,𝑟 ∈𝑆𝑛 )

𝑚𝑖𝑛 (𝑐𝑎𝑝, 𝜋𝑡 (𝑖 |𝑢 )
𝜋𝑝 (𝑖 |𝑢 )

)𝑟 . (11)

Additionally, we compute the uplift as the difference between 𝑅𝐼𝑆
and the average reward over the exposure data:

𝑈𝑝𝑙𝑖 𝑓 𝑡 = 𝑅𝐼𝑆 − 1
𝑛

∑︁
(𝑢,𝑖,𝑟 ∈𝑆𝑛 )

𝑟 . (12)

Here, 𝑆𝑛 represents the distribution of exposure data, 𝑛 is the total
number of exposure data, and 𝑟 indicates whether the user played
with the item. 𝜋𝑡 (𝑖 |𝑢) denotes the ranking score of user 𝑢 and
item 𝑖 in the new system, while 𝜋𝑝 (𝑖 |𝑢) represents the ranking
score in the current system.7 𝑐𝑎𝑝 is the capping value, searched
from {1%𝑡, 2%𝑡, 5%𝑡, 10%𝑡}, where 𝑡 = 𝑚𝑎𝑥 ({ 𝜋𝑡 (𝑖 |𝑢 )

𝜋𝑝 (𝑖 |𝑢 ) |𝑢, 𝑖 ∈ 𝑆𝑛}).
A positive uplift indicates the new system yields greater rewards
than the current system. Furthermore, the magnitude of the uplift
corresponds to the magnitude of the additional rewards obtained.

6In the exposed data, micro-videos exposed to users are considered as positive samples.
7In order to ensure that these two scores are comparable within the same range, we
apply the sigmoid function to normalize them.

Table 3: Offline A/B test results.
Metrics LightGCN LightGCN-PDRO ACVAE ACVAE-PDRO

RIS 0.1967 0.2015 0.2077 0.2147
Uplift -0.0019 0.0030 0.0149 0.0220
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(a) Ablation study in KuaiRand
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(b) Ablation study in Micro-video

Micro-video
Backend method
Implicit module
Explicit module
PDRO

Figure 2: Performance of implicit module and explicit mod-
ule compared with backend model and PDRO.

Following [8], we obtain the exposure data from Micro-video
and compare 𝑅𝐼𝑆 and 𝑈𝑝𝑙𝑖 𝑓 𝑡 between the backend model and
PDRO [28]. From the results in Table 3, it is evident that PDRO
exhibits superior performance compared to both current system 𝜋𝑡
and the backend model, thus further confirming the effectiveness
of PDRO in real-world industrial scenarios.

4.2 In-depth Analysis
4.2.1 Ablation Study (RQ2). We conduct an ablation study to
assess the individual contributions of the implicit module and
explicit module in the PDRO framework. The results are presented
in Figure 2. From these results, we have the following findings: 1)
The performance of PDRO declines when either the implicit module
or explicit module is removed, which validates the effectiveness
of each of these modules. 2) Discarding either one of the modules
still outperforms the backend model, indicating the superiority
of implicitly considering popular items in DRO and explicitly
leveraging popularity in score ranking. 3) The effectiveness of the
two modules is consistent across different datasets and backend
models, further demonstrating their robustness and generalizability.

4.2.2 Group Performance Analysis (RQ3). In this section, we
present a comprehensive evaluation of our model’s performance
across different user groups, as depicted in Table 4. As discussed
in Section 3.1, the user groups are defined based on the average
loss of their interactions, which ensures the group division w.r.t.
different levels of sparsity. The results in Table 4 demonstrates the
superior performance of our proposed method compared to both
backend models with and without DRO among sparse and popular
groups (Group 0 and Group 4, respectively).

4.2.3 Hyper-parameters Analysis (RQ2). We further select
some sensitive hyper-parameters and vary them in the ranges
presented in Section 4 and report the results in Figure 3. We can find
that: 1) The selection of group number and stage number warrants
careful consideration, as they determine the level of granularity
of group and stage division in DRO. The representation learning
for sparse items suffers from insufficient distinctions between a
small number of groups (e.g., 2 groups) while a too-large group
number may result in training instability (e.g., 8 groups), which
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Table 4: Group evaluation results. The users are grouped according to the average loss of their interactions within the backend
model. Specifically, Group 0 comprises users with the largest loss, while Group 1 consists of users with the second-largest loss,
and so forth. Bold signifies the best performance among the listed models.

NDCG@20 Micro-video KuaiRand
Group 0 Group 1 Group 2 Group 3 Group 4 Group 0 Group 1 Group 2 Group 3 Group 4

LightGCN 0.0550 0.0870 0.0834 0.0840 0.0679 0.0622 0.0673 0.0702 0.0709 0.0668
LightGCN-DRO 0.0545 0.0890 0.0825 0.0850 0.0673 0.0614 0.0679 0.0708 0.0717 0.0680
LightGCN-PDRO 0.0630 0.0972 0.0845 0.0864 0.0689 0.0749 0.0786 0.0811 0.0815 0.0821

ACVAE 0.0397 0.0613 0.0635 0.0766 0.0579 0.0787 0.0609 0.0656 0.0745 0.0856
ACVAE-DRO 0.0412 0.0627 0.0639 0.0769 0.0562 0.0783 0.0613 0.0658 0.0741 0.0852
ACVAE-PDRO 0.0425 0.0636 0.0659 0.0831 0.0587 0.0814 0.0662 0.0665 0.0796 0.0896
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Figure 3: Hyper-parameters analysis of Micro-video.

is similar to the stage number. 2) In general, augmenting the
strength of the popularity factor and trend improves performance,
as incorporating popularity aids predictions on popular items.
However, excessive emphasis on popularity risks may disregard
user preferences, resulting in inferior performance.

5 RELATEDWORK
• Distributionally Robust Optimization. DRO aims to minimize
the loss of the worst case within a pre-determined uncertainty set,
offering the potential to effectively learn the representations of
sparse users/items [25, 26, 45, 52]. The exploration of DRO methods
primarily revolves around defining the uncertainty set [3, 10, 33].

In order to mitigate noise within the uncertainty set, Group-DRO
defines the uncertainty set as a combination of subgroups within
the training set, focusing on optimizing group-level worst-case
performance [13, 29, 34]. For instance, [41] reduces uncertainty in
loss estimation by designing a streaming algorithm based on Group-
DRO. Additionally, [31] selects subgroups that lead to the most
significant reduction in global loss after gradient descent, rather
than prioritizing the minority group. However, prior methods either
focus on worst-case performance or ignore the popularity trend. To
address this, there is a need to incorporate popularity information
into DRO, maintaining the performance of popular items while
improving the representation learning of the sparse users/items.

• Debiasing Recommendation. The objective of debiasing rec-
ommendation is to address inherent biases that exist in recommen-
dation scenarios, such as popularity bias [2, 22, 36, 40, 43, 53, 54],
exposure bias [17, 18, 24], and filter bubble issues [30, 37].

Existing approaches can be broadly categorized into two primary
groups. 1) Intuitive methods [44, 53] address bias by suppressing the
learning of popular items intuitively. For example, [44] considers
oversampling popular negative samples in order to reduce popu-
larity bias. 2) Causal methods [39, 50] apply causal technologies to
eliminate the negative effect of item popularity. For instance, [50]
proposes a Popularity-bias Deconfounding and Adjusting diagram,
which removes the influence of popularity via causal intervention.

Similarly, Disentanglement Learning [7, 23, 27, 51] aims to
disentangle a user’s genuine interests to enhance the quality of
recommendations and minimize the influence of diverse biases. For
instance, [23] uses VAE to learn the disentangled user interests in
order to facilitate effective recommendations. However, existing
works focus on regulating the popularity of items, which neglects
the representation learning of sparse users/items.

6 CONCLUSION AND FUTUREWORK
We proposed a Popularity-aware DRO (PDRO) framework to
enhance the representation learning of sparse users and items
while maintaining the performance of popular items. The PDRO
framework incorporates item popularity into the DRO optimization
process through two modules. In the implicit module, we devise a
new DRO objective to implicitly consider popularity, ensuring the
enhancement of sparse user/item representations while emphasiz-
ing the optimization of items likely to become popular in the future.
Besides, the explicit module explicitly predicts item popularity
and utilizes popularity to estimate user-item matching scores. To
evaluate the effectiveness of PDRO, we conducted comprehensive
experiments on an industry dataset and two public datasets. The
results demonstrate the superiority of PDRO.

In future research, we plan to complete an online A/B test to
assess the performance of PDRO. What’s more, there are several
promising directions to further enhance PDRO. For instance, ad-
vanced time-series forecasting methods can be explored to improve
item popularity prediction. Additionally, utilizing a more flexible
and fine-grained grouping method can enhance the robustness
of PDRO. Lastly, the emerging direction of using large language
models for recommendation [1, 48] has attracted extensive attention.
It is promising to explore the effectiveness of DRO-based methods
in enhancing the robustness of these large recommender models.
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